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a  b  s  t  r  a  c  t

Battery  cell  life  depends  critically  on how  the  cell  is used.  Therefore,  battery  chargers  and  battery  man-
agement systems  must  be  designed  to control  cell  usage  carefully.  In  order  to  design  optimal  battery
controls  that  effect  a tradeoff  between  cell  performance  (in some  sense)  and  cell  life,  a  model  of cell
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degradation  is necessary.  This  model  must  be  simple  and  incremental  in order  to  be  implemented  by
an inexpensive  microcontroller.  This  paper  takes  a first  step  toward  developing  such  a controls-oriented
comprehensive  cell  degradation  model  by  deriving  a  reduced-order  model  of  a single  mechanism:  the
growth  process  of  the  solid-electrolyte  interphase  (SEI) layer,  along  with  the  resulting  resistance  rise  and
capacity loss.  This  reduced-order  model  approximates  a physics-based  PDE  model  from  the  literature,  is

 may  
ncremental reduced order model simple  and accurate,  and

. Introduction

Many applications of battery packs require high power and long
ife. These two objectives are at odds with each other since, in
eneral, high charge and discharge rates accelerate aging. It is our
ltimate goal to design methods to control a battery pack to effect
n optimum tradeoff between performance and degradation, and
o do so we will need mathematical models of the dominant cell
egradation mechanisms. These models must be simple enough
o be quickly executed on an inexpensive embedded systems
rocessor.

Presently, many battery management systems (BMS) track
acroscopic indicators of aging such as capacity fade and power

ade but few, if any, track physical indicators of aging such as
egree of solid-electrolyte-interphase (SEI) layer growth on anode
articles, degree of lithium plating on anode particles, degree of
athode dissolution, and so forth. However, identical combinations
f capacity loss and resistance rise might be achieved by travel-
ng different paths—by exciting different physical mechanisms of

egradation—yielding potentially different resultant optimal con-
rol strategies for operating the battery pack. Therefore, knowing
ell resistance and capacity alone is not sufficient to extend cell life
o the maximum extent via control.
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be  used  in  optimal  strategies  for controlling  lithium-ion  batteries.
© 2012 Elsevier B.V. All rights reserved.

We  believe that by modeling the dominant physical degradation
mechanisms that occur in a cell, and then by using those mod-
els in an optimized predictive control algorithm, battery life can
be extended. For a practical implementation, this requires that the
degradation model be simple and incremental. We  consider a model
to be simple if it is described by a small number of ordinary differ-
ence equations, and incremental (or recursive) if it predicts a future
degradation state based on a present degradation state and a pro-
posed cell input current. The model will necessarily be a function of
cell temperature, state-of-charge (SOC), and possibly other factors
as well.

Degradation leading to capacity loss and resistance rise can
occur either due to mechanical stress factors or chemical side
reactions [1–8]. Various schemes have been introduced to model
side reactions, including that of Darling and Newman, who first
introduced the concept of modeling parasitic effects in lithium-ion
batteries by modeling solvent oxidation side reactions [3].  More
recently, Ramadass and colleagues have proposed a model that
describes the formation and growth of an SEI layer on anode solid
particles during charging, that uses solvent reduction as the main
side reaction mechanism for degradation [9]. The present paper
builds on and extends this work to propose a simple incremental
model of SEI growth and associated capacity loss and resistance
rise. The proposed model may  then be used in an optimal control
scheme that will reduce side reactions and limit cell degradation.
(The control task is the subject of present research, and will be

reported in a later paper. The methodology presented in [10] is one
possible approach.) While various efforts have been made to cre-
ate reduced-order models of ideal-cell dynamics (i.e.,  models that
do not consider degradation), including single particle models by
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Nomenclature

a specific surface area of porous electrode, m−1

brug Bruggeman exponent, unitless
c concentration of Li or Li+ ions, mol  m−3

D diffusion coefficient, m2 s−1

F Faraday’s constant, 96 487 C mol−1

i0 exchange-current density for intercalation reaction,
A m−2

i0,s exchange-current density for side reaction, A m−2

JI local volumetric current density for intercalation
reaction, A m−3

Js local volumetric current density for side reaction,
A m−3

k rate constant of electrochemical reaction,
A m5/2 mol−3/2

L length of cell, m
Q cell capacity, C
R particle radius, �m
Rfilm film resistance at the electrode/electrolyte interface,

� m2

Rg universal gas constant, 8.314 J mol−1 K−1

T temperature, K
t  time, s
t0+ transport number, unitless
U local equilibrium potential, V
x length dimension, m

Greek
˛a, ˛c anodic and cathodic transfer coefficients of electro-

chemical reaction, unitless
ε volume fraction of a phase, unitless
� local potential of a phase, V
� local overpotential driving electrochemical reac-

tion, V
� conductivity of electrolyte, S m−1

� state-of-charge or stoichiometry of electrode
� conductivity of electrode, S m−1

	 density of active material, kg m−3

ı film thickness, m

Subscript/superscript
e pertaining to the electrolyte phase
s pertaining to the solid phase
n pertaining to the negative electrode

C
[
m

d
r
u
i
t
t
a
a
m
t
m
a
a

p pertaining to the positive electrode

haturvedi et al. [11] and one-dimensional models by Smith et al.
12], we believe this to be the first attempt to create a reduced-order

odel to describe a side reaction.
We note that the field of creating mathematical models of cell

egradation mechanisms is still developing. The accuracy of the
educed-order model will be no better than the accuracy of the
nderlying partial-differential-equation (PDE) model from which

t was created. So, it is important for the reader to understand that
he purpose of this paper is to propose a methodology for reducing
he order of a PDE model of a degradation mechanism to be able to
pproximate the PDE model with one that can be implemented on

 simple microprocessor, such as in one found in a battery manage-
ent system. For purpose of illustration, we apply the methodology
o the specific cell degradation mechanism of SEI layer growth as
odeled by Ramadass et al. [9].  The methodology could also be

pplied to other similar models; for example, as newer and more
ccurate models are reported in the literature.
Sources 209 (2012) 282– 288 283

In particular, our order-reduction method uses volume averag-
ing to create an algebraic “zero-dimensional” or “0-D” model of
the infinite-order PDE model proposed in [9].  This reduced-order
model (ROM) of the SEI growth mechanism is a first step toward
creating a complete coupled reduced-order model of all dominant
cell degradation mechanisms, which then could be used in an opti-
mal  control scheme.

This paper will proceed by reviewing the model of SEI layer
growth proposed in [9].  A reduced-order volume-averaged approx-
imate model is then derived. Results of pulsed-current simulations
of the full-order model and the 0-D reduced-order model are pre-
sented and compared, results are discussed, and conclusions are
made.

2. Original model

Changes at the electrode/electrolyte interface due to side reac-
tions between the anode and electrolyte are considered to be one
of the primary causes of anode aging [8].  There are a large num-
ber of reduction reactions that can lead to the deposition of solid
products on the anode, and these are less well understood, being
very dependent upon the composition of the electrolyte solution
[13]. Thus the assumption for the original Ramadass model is that
the side reaction is considered to be a consumption of the sol-
vent species and lithium ions, which will form compounds such as
Li2CO3, LiF, Li2O, and so forth, depending on the nature of the sol-
vent. Previous studies of the SEI layer formation on lithiated carbon
have shown that there is probably significant porosity in the film,
and this makes it reasonable to assume that the SEI layer contin-
ues to grow as the solvent diffuses through the layer during charge
[14–17]. The assumption of the ongoing formation of the SEI layer is
also supported by the research of Aurbach and colleagues [14], who
propose that the intercalation of lithium into the graphite anode
leads to increase in the lattice volume, which in turn stretches the
SEI layer, causing it to fracture and to expose more of the anode
to the electrolyte, fueling the side reaction, and contributing to SEI
formation.

As our goal is to create a high-fidelity reduced-order model of
the degradation model in [9],  we  adopt the same assumptions as
they, which were:

1. The main side reaction is due to the reduction of an organic
solvent, expressed as S + 2Li+ + 2e− → P, where “S” refers to the
solvent and “P” to the product formed in the side reaction.

2. The reaction occurs only during charging of the cell.
3. The products formed are a mixture of different species, result-

ing in averaged mass and density constants used in the later
equation describing the formation and growth of the SEI film.

4. The side reaction is assumed to be irreversible and Uref,s is chosen
to be 0.4 V versus Li/Li+.

5. The initial resistance of the SEI layer developed during cell for-
mation is 100 � cm2.

6. There is no overcharge reaction considered (i.e.,  lithium plating
is not modeled).

We  have somewhat relaxed Assumption 2, allowing side reac-
tions to occur during rest intervals also (and even during discharge,
which we do not report here). The reduced-order modeling method
that we present easily incorporates either variant of the assump-
tion.

The SEI growth model of [9] is tightly coupled with a

Doyle–Fuller–Newman porous-electrode style model of ideal-cell
dynamics [4],  which assumes that the solid and electrolyte phases
are considered continuous and gives no consideration to the under-
lying microstructure of the electrode. As porous-electrode theory
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s well known, but as there are variants in its implementation, we
resent those equations in Appendix A, and focus only on the SEI
rowth model of [9] here.

For the negative electrode the local volumetric transfer current
ensity Jtotal is given by a sum of the intercalation current density

I and the side reaction current density Js,

total = JI + Js, (1)

here JI is computed via the Butler–Volmer electrochemical kinetic
xpression

I = ani0,n

[
exp

(
˛a,nF

RgT
�n

)
− exp

(
−˛c,nF

RgT
�n

)]
, (2)

hich is driven by the overpotential

n = �s − �e − Uref
n − Jtotal

an
Rfilm, (3)

here i0,n is the exchange current density and Uref
n is the equilib-

ium potential which is evaluated as a function of the solid phase
oncentration at the surface of the particle.

The kinetics of the side reaction are described using a Tafel equa-
ion, which assume that the side reaction is considered irreversible,

s = −i0,san exp

(
− ˛cF

RgT
�s

)
(4)

nd the side reaction overpotential is described as

s = �s − �e − Uref,s − Jtotal

an
Rfilm. (5)

Once the side reaction current, Js, has been calculated, the
hange in the film thickness ıfilm during charging can be calculated
y

∂ıfilm

∂t
= − MP

an	PF
Js, (6)

here MP is the average molecular weight of the constituent
ompounds of the SEI layer and 	P is the average density of the
onstituent compounds. This allows the overall film resistance to
e calculated as

film = RSEI + ıfilm

�P
, (7)

here RSEI is the initial film resistance that is produced during the
ormation period of the battery, and �P is the conductivity of the
lm.

In addition to the resistance change, there is a capacity loss
aused by the side reaction current during charge, leading to capac-
ty changing via the relationship

∂Q

∂t
=
∫ Ln

0

JsA dx. (8)

. Simplifying the model

To effect an optimal control strategy, the processors in battery
hargers and battery management systems must be able to calcu-
ate the side reaction current density Js very quickly and accurately.
olving the coupled PDE equations described above is too compli-
ated for such a process. The Js model needs to be much faster and
impler. In this section, we present a simpler incremental model
or calculating Js, Rfilm, and Q.

To create a volume-averaged 0-D reduced-order model, three

dditional assumptions are made:

. The cell is always in a quasi-equilibrium state, allowing the
exchange current density i0,n to be calculated from the cell SOC
Sources 209 (2012) 282– 288

alone, neglecting local variations in electrolyte and solid sur-
face concentration. The estimated value of Js then corresponds
to a suddenly applied current pulse of magnitude iapp, which is
constant over some time interval �t.

2. The intercalation current density and the side-reaction current
densities are uniform over the anode. This allows us to state that
the total reaction current density Jtotal is related to the applied
cell current iapp by the following relationship:

Jtotal = − iapp

Voln
, (9)

where the volume of the active material is described by
Voln = LnA.

3. The anodic and cathodic charge-transfer coefficients are equal
(˛a = ˛c = 0.5).

From the above assumptions, an incremental degradation model
can be formulated as follows. First, at any point in time, the lithia-
tion state of the anode is calculated as

�n = �n,min + SOCcell

(
�n,max − �n,min

)
, (10)

where �n,max and �n,min are the stoichiometric limits of anode lithi-
ation (i.e., the value of � in Li�C6 when the cell is fully charged
and discharged, respectively). SOCcell is a value between zero and
one, which indicates the cell state-of-charge. Then Uref

n is calculated
from �n using, for example, Eq. (15).

We will ultimately iterate to find Js. We  can initialize its value
to zero and calculate the intercalation current density from Eqs. (1)
and (9).

JI = −iapp

Voln
− Js.

From JI and assumption 3, we can manipulate Eq. (2) to find the
overpotential for the intercalation reaction to be

�n = 2RgT

F
asinh

(
JI

2ani0

)
.

Then, from Eqs. (3) and (5),  the overpotential for the side reaction
is:

�s = �s − �e − Uref,s − JtotalRfilm

an
= �n + Uref

n − Uref,s.

We note that the film resistance cancels from the calculation. We
can now calculate an updated estimate of the side-reaction current
density as

Js = −i0,san exp

(
−F

2RgT
�s

)
.

In total, we  have the reduced-order model

Js = −i0,san exp

(
−F

2RgT

(
2RgT

F
asinh

(
−iapp/Voln − Js

2ani0

)

+Uref
n − Uref,s

))
= −i0,san exp

(
−F
(

Uref
n − Uref,s

)
2RgT

)

× exp

(
−asinh

(
−iapp/Voln − Js

2ani0

))
,

which we iterate until convergence (we find that fewer than ten

iterations are generally necessary—the results presented in this
paper use exactly ten iterations).

Once we have solved for Js it can then be incorporated into incre-
mental equations for film resistance and capacity loss. It is assumed
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Table 1
Electrode parameters for simulation.

Symbol Units Anode Separator Cathode

L �m 88 20 80
R �m  2 – 2
A m2 0.0596 0.0596 0.0596
�  S m−1 100 – 100
εs – 0.49 – 0.59
εe – 0.485 1 0.385
brug – 4 – 4
cmax

s mol m−3 30 555 – 51 555
c0

e mol m−3 1000 1000 1000
�i,min – 0.03 – 0.95
�i,max – 0.886 – 0.487
Ds m2 s−1 3.9 × 10−14 – 1.0 × 10−14

De m2 s−1 7.5 × 10−10 7.5 × 10−10 7.5 × 10−10

t0
+ – 0.363 0.363 0.363

k A m5/2 mol−3/2 4.854 × 10−6 – 2.252 × 10−6

˛a – 0.5 – 0.5
˛c – 0.5 – 0.5
A.V. Randall et al. / Journal of P

hat Js is constant over some small time interval �t,  and is denoted
s Js[N] for the Nth interval. Since, according to Eq. (6),  the change in
lm thickness is proportional to Js, we can arrive at an incremental
quation for film thickness as

film[N] = ıfilm[N − 1] − MP�t

an	PF
Js[N − 1],

here �t  is the equation update period, and noting that the sign of
s is negative. This result can be used to calculate the film resistance
s

film[N] = Rfilm[N − 1] − MP�t

an	PF�P
Js[N − 1].

imilarly, we  can discretize the capacity equation (8) to find that

[N] = Q [N − 1] + (ALn�t)Js[N − 1].

In summary, the proposed reduced-order model (ROM) equa-
ions are:

n = �n,min + SOCcell

(
�n,max − �n,min

)
(11)

s[N] = −i0,san exp

(
−F
(

Uref
n − Uref,s

)
2RgT

)

× exp

(
−asinh

(
−iapp[N]/Voln − Js[N]

2ani0

))
(12)

film[N] = Rfilm[N − 1] − MP�t

an	PF�P
Js[N − 1] (13)

[N] = Q [N − 1] + (ALn�t)Js[N − 1].  (14)

. Comparing the models

The validity of this reduced-order model depends first on the
ccuracy of the underlying partial differential equation model,
hich we assume here to be exact. It then depends on how

losely the reduced-order approximation of Js matches the exact
alculation of Js. In this section, results from both the full and
educed-order models for Js are compared. In addition, the error
n Js is tracked over time in order to see whether the assumption
hat Js is constant over a small period of time is reasonable.

To compare the PDE and reduced-order models, we conducted a
eries of simulations. In each simulation, the cell was initially at rest.

 sudden pulse of current was then applied, and the instantaneous
esulting Js from the PDE model was compared to the computed
s from the ROM. To simulate the PDE model, we  used COMSOL

ultiphysics 3.5a [18] coupled with a MATLAB [19] script to cycle
hrough the series of simulations and analyze results. Specifically,
ach simulation comprised a 1 s time interval, where the cell cur-
ent iapp was modeled as a Heaviside step function, which was
pplied half-way through the interval. We  found that the initial
est interval facilitated convergence of the solution by allowing the
DE solver to adjust its initial conditions before applying the step
urrent. (Even so, convergence of the PDE simulations proved trou-
lesome, and required user vigilance to ensure reliable results.) The
OM results were computed by a MATLAB script using Eq. (12).

The cell parameters that we used in the simulations match those
sed in [9,20] and are listed in Table 1. For the full-order PDE sim-
lations, the applied current was varied between 0 A and 5.4 A (a

 C rate) in steps of 0.1 A; the initial cell SOC was varied between

% and 100% in steps of 2%, and temperature was varied between
35 ◦C and 45 ◦C in steps of 20 ◦C. The solver absolute tolerance was

et to 10−5 and the relative tolerance to 10−6. The default direct
MFPACK solver was used, with 280 mesh points in the 1D battery
Uref,s V 0.4 – –
i0,s A m−2 1.5 × 10−6 – –

model and 10 624 elements in the 2D electrode model. The solver
timestep was  set to 5 ms.  A total of 14 025 simulations were run.

For the reduced-order simulations, which run much more
quickly, the applied current was  varied between 0 A and 5.4 A in
steps of 0.05 A; the initial cell SOC was varied between 0% and 100%
in steps of 1%, and the temperature was varied between −35 ◦C
and 45 ◦C in steps of 10 ◦C. A total of 112 200 simulations were
run. As one point of comparison, the set of 14 025 full-order PDE
simulations took more than eight days to complete on an Intel i7
processor, while the set of 112 200 ROM simulations took a total
of about 2.6 s to complete on the same machine. The speedup, on a
per-simulation basis, is more than 2 000 000:1. This is the primary
advantage of the ROM over the PDE model.

Fig. 1(a) shows room-temperature side-reaction current density
Js as computed by the reduced-order model (which we now denote
as Js,ROM). Fig. 1(b) shows a compilation of Js,ROM over a range of tem-
peratures. We  see two trends that match experience: degradation
is worst at high SOC and high charge rates.

Fig. 2 shows results of one PDE simulation. This example was
conducted at 25 ◦C, 50% SOC, and by applying a 1 C charge pulse
at t = 0.5 s. The figure shows the raw output of the simulation, as
compared to the ROM. Both the PDE and ROM solutions have a
non-zero negative side reaction flux Js even when the cell is at rest.
This is due to the fact that we  have relaxed Assumption 2 of the SEI
growth model in Section 2 to also allow for the side reaction when
current in the external circuit is zero. Fig. 2 shows that the ROM
matches both the rest SEI side-reaction rate and the charge-pulse
SEI side-reaction rate.

Plotted on the same scale, the full PDE solution results are indis-
tinguishable from the ROM results. So, for comparison purposes, we
define a relative error between the results as

Js,err % = Js,PDE − Js,ROM

Js,PDE
× 100,

where Js,PDE is chosen to be the value of Js from the PDE  solution
immediately after the application of the current pulse. Fig. 3 plots
the relative error between the PDE and ROM solutions for all 25 ◦C
simulations. Between 10% and 90% SOC, typical extremum oper-
ating conditions for electric vehicle battery cells, for example, the
maximum relative error was 0.44%.

To further illustrate the performance of the ROM and to see the

dependence of SEI layer growth rate on SOC and charge rate, Fig. 4
plots these results in a different format (25 ◦C). Frame (a) shows
the side-reaction current density as a function of SOC at different
charge rates (lines plotted from 0 C to 3 C in steps of 0.5 C), and
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Fig. 1. Reduced-order model results for Js: (a) at 25 ◦C; (b) at various temperatures.
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the actual averaged J values (averaged over the 1D electrode) from
Fig. 2. An example PDE simulation result.

rame (b) shows the side-reaction current density as a function of
harge rate at different SOCs (lines plotted from 0% SOC to 100%
OC in steps of 10% SOC). In all plots, the corrected PDE result is
rawn as a solid line, and the ROM result is drawn as a dashed line.

n most cases, it is impossible to visually distinguish between the
DE and ROM results.

Fig. 5 shows additional effects on relative error. Frame (a) shows
ow relative error varies with temperature. We  see that the ROM
redictions are best at high temperatures, and less good at low
emperatures. Worst-case Js,err% in the 10–90% SOC range varies
rom 0.41% at 45 ◦C to 0.55% at −35 ◦C. Frame (b) investigates the
ffect of �t  on the results. Instead of selecting the value for Js,PDE
mmediately after the application of the current pulse, Js,PDE is now
elected to be the PDE solution 0.5 s after the application of the cur-

ent pulse, at the t = 1 s point. We  see from Fig. 2 that we  expect a
omewhat different result using this method; indeed, Fig. 5(b) ver-
fies this observation. The relative error is once again worst at low
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temperatures and low values of SOC (where the absolute amount of
degradation is small). Relative errors over 10% are observed in some
cases, but in the ranges of SOC most important for control, where
SOC is greater than 25%, the worst-case Js,err% is far less, varying
from 0.85% at 45 ◦C to 1.04% at −35 ◦C.

Fig. 6 investigates the effect of a prolonged constant-current
charge at a 1 C rate, as might be experienced when a cell is being
charged. The PDE is simulated for 3000 s, starting with the cell at
rest at 10% SOC, and 1D profiles of Js(x) across the anode are plotted
at time steps 100 s, 1000 s, 2000 s, and 3000 s. Overlaid on the plot
are the average Js values predicted by the ROM at that SOC level, and
s

the PDE solution. In the ROM simulation, the SOC is updated on a
second-by-second basis to achieve the present SOC at every point,
which is used to compute the value of Js using the method explained
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Fig. 5. Additional effects on relative error: (a) v

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

J s (
m

A
 c

m
−

3 )

PDE and ROM solutions over extended period

 

 
100 s

1000 s
2000 s

3000 s
1D PDE computation of J

s

Avg. over width of PDE computation of J
s

ROM computation of average J
s

i
c
o

5

r
fi
e
t
c
2
f
d
v
a
o

t
u
a
v
c
I
o
t

A

b
A

Dimensionless distance across anode

Fig. 6. Comparing PDE and ROM solutions over long 1 C charge.

n this paper. We  see that even over prolonged constant-current
harge profiles, the ROM is accurate, indicating that Assumption 1
f ROM (cf. Section 3) is a reasonable assumption to make.

. Conclusion

From the results above, there is a clear advantage to having a
educed order model. The reduced order model takes the very dif-
cult and time consuming procedure to calculate the governing
quations necessary to obtain Js in a PDE model, and reduces them
o a very fast algebraic expression, Eq. (12), that a small micro-
ontroller can easily calculate. As noted, the speedup is more than

 000 000 : 1 when using the ROM versus the PDE solver. Further,
rom this simple calculation of Js, an incremental model of degra-
ation is obtained, Eqs. (13) and (14). The results themselves are
ery accurate, resulting in about 0.5% relative error at the instant of
pplied current to about 1% relative error 0.5 s later, for SOC ranges
f interest.

Due to the high-fidelity approximation of Js, we  expect that con-
rol actions taken using Js,ROM will closely approximate those taken
sing Js,PDE. Therefore, this model shows potential for being used in
n optimal charger design. This would allow a battery to be charged
ery quickly, but also allow the microcontroller to optimize the
harging profile easily in order to avoid unnecessary degradation.
n a future paper, the authors will explain their current research into
ptimal profiles that consider SEI growth as well as other degrada-
ion mechanisms.
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Appendix A. Model equations

The following is a summary of the governing equations for the
model developed in [4] and used in [9] for ideal cell dynamics. The
conservation of lithium in a single particle is modeled by Fick’s law
of diffusion

∂cs

∂t
= Ds

r2

∂
∂r

(
r2 ∂cs

∂r

)
,

with boundary conditions

∂cs

∂r

∣∣∣∣
r=0

= 0 and Ds
∂cs

∂r

∣∣∣∣
r=R

= −JI
asF

,

where cs is the solid-phase lithium concentration (the subscript s
denotes the solid phase), Ds is the solid phase diffusion coefficient,
JI is the volumetric rate of electrochemical reaction at the particle
surface, as is the specific interfacial surface area, and F is Faraday’s
constant. For a spherical particle of active material that has a radius
R in an electrode with volume fraction of active material εs, the
interfacial surface area is as = 3εs/R.

Conservation of lithium in the electrolyte phase gives the fol-
lowing equation:

∂ (εece)
∂t

= ∂
∂x

(
Deff

e
∂
∂x

ce

)
+ 1 − t0+

F
JI,

which has the following zero flux boundary conditions at the cur-
rent collectors,

∂ce

∂x

∣∣∣∣
x=0

= ∂ce

∂x

∣∣∣∣
x=L

= 0,

where ce is the electrolyte phase lithium concentration (the sub-
script e denotes the electrolyte phase), εe is the electrolyte phase
volume fraction and t0+ is the transference number of Li+ with
respect to the solvent velocity, which is assumed constant. The
effective diffusion coefficient is calculated from a reference coeffi-
cient using the Bruggeman constant, Deff

e = Deεbrug
e . The Bruggeman

relation takes into account the tortuosity of the path the Li+ ions
take through the electrode.

Charge conservation in the solid phase in the electrodes is

described by Ohm’s law,

∂
∂x

(
�eff ∂

∂x
�s

)
− JI = 0,
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ith boundary conditions at the current collector,

�eff ∂�s

∂x

∣∣∣∣
x=0

= �eff ∂�s

∂x

∣∣∣∣
x=L

= I

A
= iapp,

here �s is the potential of the solid, �eff = �εbrug
s is the effective

onductivity of the solid, A is the electrode plate area, and I is the
pplied current, where a positive current discharges the battery.
here must be zero electronic current at the separator boundary,
o

∂�s

∂x

∣∣∣∣
x=Ln,sep

= ∂�s

∂x

∣∣∣∣
x=Lp,sep

= 0.

Conservation of charge in the electrolyte gives the equation

∂
∂x

(
�eff ∂

∂x
�e

)
+ ∂

∂x

(
�eff

D
∂
∂x

ln (ce)

)
+ JI = 0,

here �e is the potential of the electrolyte phase, and �eff is the
ffective ionic conductivity, calculated from the Bruggeman rela-
ion,

�eff = �εbrug
e = (4.1253 × 10−4 + 5.007ce − 4.7212 × 103c2

e

+1.5094 × 106c3
e − 1.6018 × 108c4

e )εbrug
e

�eff
D = 2RgT�eff

F

(
t0
+ − 1

)(
1 + d ln (f±)

d ln (ce)

)
,

here Rg is the universal gas constant, T is the temperature and f± is
he activity coefficient, assumed here to be constant (its derivative
s zero). This equation has boundary conditions

∂�e

∂x

∣∣∣∣
x=0

= ∂�e

∂x

∣∣∣∣
x=L

= 0.

The PDEs are coupled via the intercalation current density

I = aji0,j

[
exp

(
˛a,jF

RgT
�j

)
− exp

(
−˛c,jF

RgT
�j

)]
, j = n, p

hich is driven by the overpotential

j = �s − �e − Uref
j − Jtotal

aj
Rfilm,
here i0 is the exchange current density,

0,j = kj

(
cmax

s,j − cs,j

)˛a,j
(

cs,j

)˛c,j (ce)˛a,j , j = n, p

[
[
[

Sources 209 (2012) 282– 288

and Uref
j

is the equilibrium potential which is evaluated as a function
of the solid phase concentration at the surface of the particle. For
this work,

Uref
n = 0.7222 + 0.1387�n + 0.029�1/2

n − 0.0172
�n

+ 0.0019

�1.5
n

+ 0.2808 exp
(

0.90 − 15�n

)
− 0.7984 exp

(
0.4465�n − 0.4108

)
(15)

Uref
p =

(−4.656 + 88.669�4
p + 342.909�4

p + 342.909�6
p − 462.471�8

p + 433.434�10
p )

(−1 + 18.933�2
p − 79.532�4

p + 37.311�6
p − 73.083�8

p + 95.96�10
p )

.
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